Preview

ПСИХИАТРИЯ

Расширенный поиск

Реактивность микроглии в префронтальной коре при шизофрении

https://doi.org/10.30629/2618-6667-2023-21-5-25-39

Аннотация

Обоснование: шизофрения связана с нейровоспалением и дисрегуляцией иммунной системы с участием микроглии. Исследования реактивности микроглии при шизофрении находятся на начальном этапе. Результаты нейровизуализационных и постмортальных оценок противоречивы.
Цель исследования: анализ и обобщение результатов морфометрического изучения реактивности микроглии на ультраструктурном уровне в префронтальной коре аутопсийного мозга при шизофрении по сравнению с контролем без психической патологии. 
Материал и методы: исследован слой 5 префронтальной коры (поле 10 по Бродману) в 21 случае шизофрении и 20 контрольных случаях с помощью трансмиссионной электронной микроскопии и морфометрии. 
Результаты и заключение: установлено, что шизофрения характеризуется сочетанием признаков активации прогрессирующей дистрофии и ускоренного старения микроглии. Реактивность микроглии при шизофрении связана с возрастом, возрастом начала болезни, длительностью болезни и типом течения болезни, что свидетельствует об участии микроглии в патологическом процессе при шизофрении. Повреждение и дефицит митохондрий и нарушения энергетического метаболизма могут играть ведущую роль в дисфункции микроглии при шизофрении.

Об авторах

Н. А. Уранова
ФГБНУ «Научный центр психического здоровья»
Россия

Наталия Александровна Уранова, доктор медицинских наук, заведующая лабораторией, лаборатория клинической нейроморфологии

Москва



О. В. Вихрева
ФГБНУ «Научный центр психического здоровья»
Россия

Ольга Васильевна Вихрева, кандидат биологичеcких наук, старший научный сотрудник, лаборатория клинической нейроморфологии

Москва



Список литературы

1. Müller N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–982. doi: 10.1093/schbul/sby024

2. Mongan D, Ramesar M, Föcking M, Cannon M, Cotter D. Role of inflammation in the pathogenesis of schizophrenia: A review of the evidence, proposed mechanisms and implications for treatment. Early Interv Psychiatry. 2020;14(4):385–397. doi: 10.1111/eip.12859

3. Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol. 2016;173(4):666–680. doi: 10.1111/bph.13364

4. Munn NA. Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses. 2000 54(2):198– 202. doi: 10.1054/mehy.1999.0018

5. Monji A, Kato T, Kanba S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin Neurosci. 2009;63(3):257–265. doi: 10.1111/j.1440-1819.2009.01945.x

6. Bayer TA, Falkai P, Maier W. Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res. 1999;33(6):543–548. doi: 10.1016/s0022-3956(99)00039-4

7. Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev. 2014;38:72–93. doi: 10.1016/j. neubiorev.2013.11.006

8. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS. Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry. 2008;64(9):820– 822. doi: 10.1016/j.biopsych.2008.04.025

9. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50(11):1801–1807. doi: 10.2967/jnumed.109.066647

10. van der Doef TF, de Witte LD, Sutterland AL, Jobse E, Yaqub M, Boellaard R, de Haan L, Eriksson J, Lammertsma AA, Kahn RS, van Berckel BN. In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophr. 2016;31(2):16031. doi: 10.1038/npjschz.2016.31

11. Di Biase MA, Zalesky A, O’keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD, Amminger GP, Nelson B, Scott AM, Hickie I, Banati R, Turkheimer F, Yaqub M, Everall IP, Pantelis C, Cropley V. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry. 2017;7(8):e1225. doi: 10.1038/tp.2017.193

12. Uranova NA, Bonartsev PD, Androsova LV, Rakhmanova VI, Kaleda VG. Impaired monocyte activation in schizophrenia: ultrastructural abnormalities and increased IL-1β production. Eur Arch Psychiatry Clin Neurosci. 2017;267(5):417–426. doi: 10.1007/s00406-017-0782-1

13. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of Microglia. Physiol Rev. 2011;91(2):461– 553. doi: 10.1152/physrev.00011.2010

14. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai P.G., Kahn RS, Sommer IE. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry. 2017;7(3):e1075. doi: 10.1038/tp.2017.4

15. Gober R, Ardalan M, Shiadeh SMJ, Duque L, Garamszegi SP, Ascona M, Barreda A, Sun X, Mallard C, Vontell RT. Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions. Brain Pathol. 2022;32(1):e13003. doi: 10.1111/bpa.13003

16. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS. Increased in-flammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry. 2013;18(2):206–214. doi: 10.1038/mp.2012.110

17. Глезер ИИ, Сухорукова ЛИ. Структурные особенности нейроглии при шизофрении с периодическим и непрерывным типами течения (гистологическое и электронно-микроскопическое исследование). Журнал неврологии и психиатрии имени С.С. Корсакова. 1966;66(10):1529–1537. PMID: 6000316. Glezer II, Sukhorukova LI. Structural features of neuroglia in schizophrenia of the periodic and uninterruped types (histological and electron microscopic study. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 1966;66(10):1529–1537 (In Russ.). PMID: 6000316.

18. Limongi R, Mackinley M, Dempster K, Khan AR, Gati JS, Palaniyappan L. Frontal-striatal connectivity and positive symptoms of schizophrenia: implications for the mechanistic basis of prefrontal rTMS. Eur Arch Psychiatry Clin Neurosci. 2021;271(1):3–15. doi: 10.1007/s00406-020-01163-6

19. Fuentes-Claramonte P, Ramiro N, Torres L, Argila-Plaza I, Salgado-Pineda P, Soler-Vidal J, García-León MÁ, Albacete A, Bosque C, Panicalli F, Boix E, Munuera J, Tristany J, Sarró S, Bernardo M, Salvador R, McKenna PJ, Pomarol-Clotet E. Negative schizophrenic symptoms as prefrontal cortex dysfunction: Examination using a task measuring goal neglect. Neuroimage Clin. 2022;35:103119. doi: 10.1016/j. nicl.2022.103119

20. Uranova NA, Vikhreva OV, Rakhmanova VI. Abnormal microglial reactivity in gray matter of the prefrontal cortex in schizophrenia. Asian J Psychiatr. 2021;63:102752. doi: 10.1016/j.ajp.2021.102752

21. Вихрева ОВ, Уранова НА. Реактивность микроглии в префронтальной коре при разных типах течения шизофрении. Журнал неврологии и психиатрии имени С.С. Корсакова 2021;121(12):77–83. doi: 10.17116/jnevro202112112177 Vikhreva OV, Uranova NA. Microglial reactivity in the prefrontal cortex in different types of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(12):77–83. (In Russ.). doi: 10.17116/jnevro202112112177

22. Giridharan VV, Scaini G, Colpo GD, Doifode T, Pinjari OF, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells. 2020;9(3):577. doi: 10.3390/cells9030577

23. Zhang L, Zhao J. Profile of minocycline and its potential in the treatment of schizophrenia. Neuropsychiatr Dis Treat. 2014;10:1103–1111. doi: 10.2147/NDT. S64236

24. Lu Y, Zhou M, Li Y, Li Y, Hua Y, Fan Y. Minocycline promotes functional recovery in ischemic stroke by modulating microglia polarization through STAT1/STAT6 pathways. Biochem Pharmacol. 2021;186:114464. doi: 10.1016/j.bcp.2021.114464

25. Zheng W, Zhu XM, Zhang QE, Cheng G, Cai DB, He J, Ng CH, Ungvari GS, Peng XJ, Ning YP, Xiang YT. Adjunctive minocycline for major mental disorders: A systematic review. J Psychopharmacol. 2019;33(10):1215–1226. doi: 10.1177/0269881119858286

26. De Picker LJ, Victoriano GM, Richards R, Gorvett AJ, Lyons S, Buckland GR, Tofani T, Norman JL, Chatelet DS, Nicoll JAR, Boche D. Immune environment of the brain in schizophrenia and during the psychotic episode: A human post-mortem study. Brain Behav Immun. 2021;97:319–327. doi: 10.1016/j. bbi.2021.07.017

27. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–462. doi: 10.1038/nature07203

28. Patel S, Sharma D, Kalia K, Tiwari V. Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev. 2017;83:589–603. doi: 10.1016/j.neubiorev.2017.08.025

29. Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, Yamauchi Y, Yamada S, Kanba S. Neuroin-flammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115–121. doi: 10.1016/j. pnpbp.2011.12.002

30. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, Okubo Y, Suhara T. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol. 2010;13(7):943–950. doi: 10.1017/S1461145710000313

31. Kirkpatrick B, Kennedy BK. Accelerated aging in schizophrenia and related disorders: future research. Schizophr. Res. 2018;196:4–8. doi: 10.1016/j. schres.2017.06.034

32. Kochunov P, Glahn DC, Rowland LM, Olvera RL, Winkler A, Yang YH, Sampath H, Carpenter WT, Duggirala R, Curran J, Blangero J, Hong LE. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol Psychiatry. 2013;73(5):482–491. doi: 10.1016/j.biopsych. 2012.10.002

33. Клюшник ТП, Зозуля СА, Андросова ЛВ, Отман ИН, Дупин АМ, Пантелеева ГП, Олейчик ИВ, Абрамова ЛИ, Столяров СА, Шипилова ЕС, Борисова ОА. Иммунологический мониторинг эндогенных приступообразных психозов. Журнал неврологии и психиатрии имени С.С. Корсакова. 2014;114(2):37–41. Klyushnik TP, Zozulya SA, Androsova LV, Sarmanova ZV, Otman IN, Dupin AM, Panteleeva GP, Abramova LI, Stoliarov SA, Shipilova ES, Borisova OA. Immunological monitoring of endogenous attack-like psychoses. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014;114(2):37–41. (In Russ.).

34. Андросова ЛВ, Михайлова НМ, Зозуля СА, Дупин АМ, Клюшник ТП. Маркеры воспаления при шизофрении позднего возраста. Журнал неврологии и психиатрии имени С.С. Корсакова. 2014;114(12):60–64. doi: 10.1016/j.schres.2015.07.018 Androsova LV, Mikhaylova NM, Zozulia SA, Dupin AM, Kliushnik TP. Inflammatory markers in schizophrenia in aged. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014;114(12):60–64. (In Russ.). doi: 10.17116/jnevro201411412160-64

35. Watkins CC, Andrews SR. Clinical studies of neuroinflammatory mechanisms in schizophrenia. Schizophr Res. 2016;176(1):14–22. doi: 10.1016/j. schres.2015.07.018

36. Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry. 2022;12(1):464. doi: 10.1038/s41398-022-02233-0

37. Roberts RC. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion. 2021;56:91–101. doi: 10.1016/j. mito.2020.11.009

38. Савушкина ОК, Терешкина ЕБ, Прохорова ТА, Воробьеа ЕА, Бокша ИС, Бурбаева ГШ. Распределение изоформы креатинкиназы Б в мозге при шизофрении. Журнал неврологии и психиатрии имени С.С. Корсакова. 2016;116(9):62–68. doi: 10.17116/jnevro20161169162-68 Savushkina OK, Tereshkina EB, Prokhorova TA, Vorobeva EA, Boksha IS, Burbaeva GSh. Creatine kinase isoform B distribution in the brain in schizophrenia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2016;116(9):62-68. (In Russ.). doi: 10.17116/jnevro20161169162-68

39. Whitehurst T, Howes O. The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev. 2022;132:449–464. doi: 10.1016/j.neubiorev.2021.11.047

40. Da Silva T, Wu A, Laksono I, Prce I, Maheandiran M, Kiang M, Andreazza AC, Mizrahi R. Mitochondrial function in individuals at clinical high risk for psychosis. Sci Rep. 2018;18;8(1):6216. doi: 10.1038/s41598-018-24355-6

41. Maurer I, Zierz S, Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res. 2001;48(1):125–136. doi: 10.1016/s0920-9964(00)00075-x

42. Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet. 2005;14(2):241–253. doi: 10.1093/hmg/ddi022

43. Smesny S, Gussew A, Biesel NJ, Schack S, Walther M, Rzanny R, Milleit B, Gaser C, Sobanski T, Schultz CC, Amminger P, Hipler UC, Sauer H, Reichenbach JR. Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients. Schizophr Res. 2015;168(1– 2):322–329. doi: 10.1016/j.schres.2015.07.013

44. Kung L, Roberts RC. Mitochondrial pathology in human schizophrenic str iatum: a postmortem ultrastructural study. Synapse. 1999;31:67–75. doi: 10.1002/(SICI)1098-2396(199901)31:1<67:: AID-SYN9>3.0.CO;2-#

45. Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res. 2020;217:136–147. doi: 10.1016/j.schres.2019.09.007

46. Fan Y, Simmen T. Mechanistic Connections between Endoplasmic Reticulum (ER) Redox Control and Mitochondrial Metabolism. Cells. 2019;8(9):1071. doi: 10.3390/cells8091071

47. He B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ. 2006;13(3):393– 403. doi: 10.1038/sj.cdd.4401833

48. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–9231. doi: 10.1128/MCB.01453-06 Epub 2006 Oct 9. PMID: 17030611; PMCID: PMC1698520.

49. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–697,643. doi: 10.1038/sj.mp.4001511

50. Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP. Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Mol Neuropsychiatry. 2019;5(1):13–27. doi: 10.1159/000495658

51. Ross T, Szczepanek K, Bowler E, Hu Y, Larner A, Lesnefsky EJ, Chen Q. Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochim Biophys Acta. 2013;1830(10):4537–4542. doi: 10.1016/j. bbagen.2013.05.035

52. Suárez-Méndez S, García-de la Cruz DD, Tovilla-Zárate CA, Genis-Mendoza AD, Ramón-Torres RA, González-Castro TB, Juárez-Rojop IE. Diverse roles of mtDNA in schizophrenia: Implications in its pathophysiology and as biomarker for cognitive impairment. Prog Biophys Mol Biol. 2020;155:36–41. doi: 10.1016/j.pbiomolbio.2020.04.004

53. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem. 2002;83(6):1241–1251. doi: 10.1046/j.1471-4159.2002.01263.x

54. Karry R, Klein E, Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry. 2004;55(7):676– 684. doi: 10.1016/j.biopsych.2003.12.012

55. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction and aging. Rejuvenation Res. 2005;8(1):3–5. doi: 10.1089/rej.2005.8.3

56. Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. Enhanced mitochondrial autophagy (mitophagy) in oligodendrocytes might play a role in white matter pathology in schizophrenia. Med Hypotheses. 2020;134:109443. doi: 10.1016/j.mehy.2019.109443

57. Comer AL, Carrier M, Tremblay M-È, Cruz-Martín A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front Cell Neurosci. 2020;14:274. doi: 10.3389/fncel.2020.00274

58. Bergink V, Gibney SM, Drexhage HA. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol Psychiatry. 2014;75:324–331. doi: 10.1016/j.biopsych.2013.09.037

59. Rey R, Suaud-Chagny MF, Bohec AL, Dorey JM, d’Amato T, Tamouza R, Leboyer M. Overexpression of complement component C4 in the dorsolateral prefrontal cortex, parietal cortex, superior temporal gyrus and associative striatum of patients with schizophrenia. Brain Behav Immun. 2020;90:216–225. doi: 10.1016/j. bbi.2020.08.019

60. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K. Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry. 2007;62(7):711–721. doi: 10.1016/j.biopsych. 2006.12.021

61. Голимбет ВЕ, Клюшник ТП. Молекулярно-генетический и иммунологический аспекты формирования психопатологических симптомов при шизофрении. Журнал неврологии и психиатрии имени С.С. Корсакова. 2022;122(10):66–71. doi: 10.17116/jnevro202212210166 Golimbet VE, Kliushnik TP. Molecular-genetic and immunological aspects of the formation of psychopathological symptoms in schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(10):66–71. (In Russ.). doi: 10.17116/jnevro202212210166

62. Okusaga OO. Accelerated aging in schizophrenia patients: the potential role of oxidative stress. Aging Dis. 2013;5(4):256–262. doi: 10.14336/AD.2014.0500256

63. Miller BJ, Goldsmith DR. Towards an Immunophenotype of Schizophrenia: Progress, Potential Mechanisms, and Future Directions. Neuropsychopharmacology. 2017;42(1):299–317. doi: 10.1038/npp.2016.211

64. Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:5–19. doi: 10.1016/j.pnpbp.2012.06.014

65. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci. 2000;12(10):3721–3728. doi: 10.1046/j.1460-9568.2000.00229.x

66. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–130. doi: 10.1017/S1461145710000805

67. Xin L, Mekle R, Fournier M, Baumann PS, Ferrari C, Alameda L, Jenni R, Lu H, Schaller B, Cuenod M, Conus P, Gruetter R, Do KQ. Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling with Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophr Bull. 2016;42(5):1185–1196. doi: 10.1093/schbul/sbw038

68. Nakanishi H, Wu Z. Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res. 2009;201(1):1–7. doi: 10.1016/j.bbr.2009.02.001

69. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141(3):302–313. doi: 10.1111/imm.12163

70. Catale C, Gironda S, Lo Iacono L, Carola V. Microglial Function in the Effects of Early-Life Stress on Brain and Behavioral Development. J Clin Med. 2020;9(2):468. doi: 10.3390/jcm9020468

71. Ferle V, Repouskou A, Aspiotis G, Raftogianni A, Chrousos G, Stylianopoulou F, Stamatakis A. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol Behav. 2020;215:112791. doi: 10.1016/j.physbeh. 2019.112791

72. Ribeiro BM, do Carmo MR, Freire RS, Rocha NF, Borella VC, de Menezes AT, Monte AS, Gomes PX, de Sousa FC, Vale ML, de Lucena DF, Gama CS, Macêdo D. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1–3):12–19. doi: 10.1016/j.schres.2013.10.040

73. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, Jacobs KR, Balzan R, Bruggemann J, O’Donnell M, Lenroot R, Guillemin GJ, Weickert TW. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2020;25(11):2860–2872. doi: 10.1038/s41380-019-0401-9

74. Fillman SG, Weickert TW, Lenroot RK, Catts SV, Bruggemann JM, Catts VS, Weickert CS. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol Psychiatry. 2016;21(8):1090–1098. doi: 10.1038/mp.2015.90

75. McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE. Microglia regulate central nervous system myelin growth and integrity. Nature. 2023;613(7942):120–129. doi: 10.1038/s41586-022-05534-y

76. Uranova N. The Neuropathology of white matter in schizophrenia. In: The Neuropathology of schizophrenia. Springer Nature. 2021:179–219. doi: 10.1007/978-3-030-68308-5

77. Garver DL, Holcomb JA, Christensen JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int J Neuropsychopharmacol. 2008;11(1):49–61. doi: 10.1017/S1461145707007730

78. Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Ultrastructural pathology of oligodendrocytes adjacent to microglia in prefrontal white matter in schizophrenia. NPJ Schizophr. 2018;4(1):26. doi: 10.1038/s41537-018-0068-2

79. Уранова НА, Вихрева ОВ, Романова ВИ. Особенности взаимодействия микроглии и олигодендроцитов в белом веществе при непрерывнотекущей шизофрении. Журнал неврологии и психиатрии имени С.С. Корсакова. 2022;122(12):128–137. doi: 10.17116/jnevro2022122121128 Uranova NA, Vikhreva OV, Rakhmanova VI. Specific interactions between microglia and oligodendrocytes in white matter in continuous schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(12):128–137. (In Russ.). doi: 10.17116/jnevro2022122121128

80. Robicsek O, Ene HM, Karry R, Ytzhaki O, Asor E, McPhie D, Cohen BM, Ben-Yehuda R, Weiner I, Ben-Shachar D. Isolated Mitochondria Transfer Improves Neuronal Differentiation of Schizophrenia-Derived Induced Pluripotent Stem Cells and Rescues Deficits in a Rat Model of the Disorder. Schizophr Bull. 2018;44(2):432–442. doi: 10.1093/schbul/sbx077


Рецензия

Для цитирования:


Уранова Н.А., Вихрева О.В. Реактивность микроглии в префронтальной коре при шизофрении. ПСИХИАТРИЯ. 2023;21(5):25-39. https://doi.org/10.30629/2618-6667-2023-21-5-25-39

For citation:


Uranova N.A., Vikhreva O.V. Microglial Reactivity in the Prefrontal Cortex in Schizophrenia. Psychiatry (Moscow) (Psikhiatriya). 2023;21(5):25-39. (In Russ.) https://doi.org/10.30629/2618-6667-2023-21-5-25-39

Просмотров: 314


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)