Preview

Psikhiatriya

Advanced search

Electroencephalographic Markers of Depressive Disorders Resistance to Pharmacotherapy and Determination of a Possible Approach to Individual Prognosis of Therapy Effectiveness

https://doi.org/10.30629/2618-6667-2021-19-2-39-45

Abstract

The aim was to identify markers of resistance of patients with depressive disorders to first-line antidepressant therapy in order to build predictive models of therapy effectiveness based on parameters of brain bioelectric activity.

Patients and methods: 74 patients with depressive disorder were examined and divided into two groups based on the degree of improvement in clinical symptoms according to the Hamilton Depression Rating Scale (HDRS): patients sensitive to therapy (n = 49) and insensitive to therapy (n = 25). All patients received syndrome-based antidepressants from the group of selective serotonin reuptake inhibitors for 28–30 days. Patients’ electroencephalogram parameters were recorded and evaluated before starting the course of therapy.

Results: it was found higher values of the spectral power of the theta, alpha and beta rhythm in the group of patients insensitive to antidepressant therapy. Based on the data obtained, a prognostic model of the effectiveness of therapy in patients with depressive disorders was built. The accuracy of this model was 83.3%.

Conclusion: thus, the mathematical approach used in our work and the results obtained complement c the data available in the literature on the pathophysiological mechanisms of depressive disorders and can be useful in clinical practice, which will undoubtedly affect the quality of therapy.

About the Authors

S. A. Galkin
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

Stanislav A. Galkin, Graduate Student

Tomsk



S. N. Vasilieva
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences
Russian Federation

Svetlana N. Vasilieva, MD, PhD, Cand. of Sci. (Med.)

Tomsk



S. A. Ivanova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences; Siberian State Medical University (SSMU)
Russian Federation

Svetlana A. Ivanova, MD, PhD, Dr. of Sci. (Med.), Professor, Head of the Laboratory of Molecular Genetics and Biochemistry

Tomsk



N. A. Bokhan
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC) of the Russian Academy of Sciences; Siberian State Medical University (SSMU)
Russian Federation

Nikolay A. Bokhan, MD, PhD, Dr. of Sci. (Med.), Professor, Аcademician of the Russian Academy of Sciences Academician, Director;  head of the Department of Psychiatry, Psychotherapy, Narcology with the Course Med. Psychology

Tomsk



References

1. Krasnov VN. Depressija kak social’naja i klinicheskaja problema sovremennoj mediciny. Rossijskij psihiatricheskij zhurnal. 2011;(6):8–10. (In Russ.).

2. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu. Rev. Public Health. 2013;34:119–138. doi: 10.1146/annurev-publhealth-031912-114409. PMID: 23514317; PMCID: PMC4100461.

3. Freeman A, Tyrovolas S, Koyanagi A. The role of socio-economic status in depression: results from the COURAGE (aging survey in Europe). BMC Public Health. 2016;(1):1098. doi:10.1186/s12889-016-3638-0

4. Sakurai H, Uchida H, Kato M, Suzuki T, Baba H, Watanabe K, Inada K, Kikuchi T, Katsuki A, Kishida I, Sugawara Kikuchi Y, Yasui-Furukori N; Medical Education Panel of the Japanese Society of Clinical Neuropsychopharmacology. Pharmacological management of depression: Japanese expert consensus. J. Affect. Disord. 2020;266:626–632. doi: 10.1016/j. jad.2020.01.149. PMID: 32056937

5. Philip NS, Carpenter LL, Tyrka AR, Price LH. Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert. Opin. Pharmacother. 2010;11(5):709–722. doi: 10.1517/14656561003614781. PMID: 20151847; PMCID: PMC2835848

6. Mohamed S, Johnson GR, Vertrees JE, Guarino PD, Weingart K, Young IT, Yoon J, Gleason TC, Kirkwood KA, Kilbourne AM, Gerrity M, Marder S, Biswas K, Hicks P, Davis LL, Chen P, Kelada A, Huang GD, Lawrence DD, LeGwin M, Zisook S. The VA augmentation and switching treatments for improving depression outcomes (VAST-D) study: Rationale and design considerations. Psychiatry Res. 2015;229(3):760–770. doi: 10.1016/j.psychres.2015.08.005. Epub 2015 Aug 6. PMID: 26279130

7. Trivedi MH. Treating depression to full remission. J. Clin. Psychiatry. 2009;70(1):e01. doi: 10.4088/ jcp.8017br6c.e01. PMID: 19222976.

8. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M; STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry. 2006;163(1):28–40. doi: 10.1176/appi.ajp.163.1.28. PMID: 16390886

9. Smulevich AB, Andrjushenko AV, Romanov DV, Zaharova NV. Remissii pri affektivnyh zabolevanijah: jepidemiologija, psihopatologija, klinicheskij i social’nyj prognoz, vtorichnaja profi laktika. Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2014;(3):4–13. (In Russ.).

10. Wentink C, Huijbers MJ, Lucassen P, Kramers C, Akkermans R, Adang E, Spijker J, Speckens AEM. Discontinuation of antidepressant medication in primary care supported by monitoring plus mindfulness-based cognitive therapy versus monitoring alone: design and protocol of a cluster randomized controlled trial. BMC Fam. Pract. 2019;20(1):105. doi: 10.1186/s12875-019-0989-5. PMID: 31349796; PMCID: PMC6660713

11. Galkin SA., Simutkin GG, Schastnyj ED, Ivanova SA, Bohan NA. Obzor primenenija biologicheskoj obratnoj svjazi v terapii pacientov s depressivnymi rasstrojstvami. Sovremennaja terapija psihicheskih rasstrojstv. 2020;(3):38–43. (In Russ.). doi: 10.21265/ PSYPH.2020.53.52.005

12. Iznak AF, Iznak EV, Abramova LI, Lozhnikov MA. Modeli kolichestvennogo prognoza terapevticheskogo otveta bol’nyh depressiej po parametram ishodnoj EEG. Fiziologija cheloveka. 2019;(6):36–43. (In Russ.). doi: 10.1134/S0131164619060055

13. Schiller MJ. Quantitative Electroencephalography in Guiding Treatment of Major Depression. Front Psychiatry. 2019;9:779. doi: 10.3389/fpsyt.2018.00779. PMID: 30728787; PMCID: PMC6351457

14. Spronk D, Arns M, Barnett KJ, Cooper NJ, Gordon E. An investigation of EEG, genetic and cognitive markers of treatment response to antidepressant medication in patients with major depressive disorder: a pilot study. J. Affect. Disord. 2011;128(1– 2):41–48. doi: 10.1016/j.jad.2010.06.021. PMID: 20619899

15. Allen JJ, Reznik SJ. Frontal EEG Asymmetry as a Promising Marker of Depression Vulnerability: Summary and Methodological Considerations. Curr. Opin. Psychol. 2015;4:93–97. doi: 10.1016/j.copsyc.2014.12.017. Epub 2015 Jan 2. PMID: 26462291; PMCID: PMC4599354

16. Iosifescu DV. Electroencephalography-derived biomarkers of antidepressant response. Harv. Rev. Psychiatry. 2011;19(3):144–154. doi: 10.3109/10673229.2011.586549. PMID: 21631160

17. Iznak AF, Tiganov AS, Iznak EV, Sorokin SA. EEG-korreljaty i vozmozhnye prediktory jeffektivnosti terapii jendogennoj depressii. Fiziologija cheloveka. 2013;(4):49. (In Russ.).

18. Galkin SA, Peshkovskaia AG, Simutkin GG, Vasil’eva SN, Roshchina OV, Ivanova SA, Bokhan NA. Disorders of spatial working memory in affective disorders with mild current depression and their neurophysiological correlates. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10):56–61. (In Russ.). doi: 10.17116/jnevro201911910156

19. Grønli J, Rempe MJ, Clegern WC, Schmidt M, Wisor JP. Beta EEG refl ects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness. J. Sleep Res. 2016;25(3):257–268. doi: 10.1111/ jsr.12380. PMID: 26825702; PMCID: PMC5866048

20. Klimesch W. D-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012;16(12):606–617. doi: 10.1016/j. tics.2012.10.007. PMID: 23141428; PMCID: PMC3507158

21. Galkin SA, Peshkovskaja AG, Kisel’ NI, Roshhina OV, Mandel’ AI, Ivanova SA, Bohan NA. Narushenija prostranstvennoj rabochej pamjati i ee nejrofi ziologicheskie korreljaty pri alkogol’noj zavisimosti. Patologicheskaja fi ziologija i jeksperimental’naja terapija. 2020;(3):12–19. (In Russ.). doi: 10.25557/00312991.2020.03.12-19


Review

For citations:


Galkin S.A., Vasilieva S.N., Ivanova S.A., Bokhan N.A. Electroencephalographic Markers of Depressive Disorders Resistance to Pharmacotherapy and Determination of a Possible Approach to Individual Prognosis of Therapy Effectiveness. Psikhiatriya. 2021;19(2):39-45. (In Russ.) https://doi.org/10.30629/2618-6667-2021-19-2-39-45

Views: 626


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)